Aller au contenu
Accueil " Connaissances " Thermal Degradation of Stainless Steel

Thermal Degradation of Stainless Steel

    Thermal degradation refers to the phenomenon whereby acier inoxydable loses its beneficial properties due to prolonged exposure to high temperatures.This process poses a significant hazard to systems employing tuyaux en acier inoxydable et raccords. Prolonged high-temperature exposure fundamentally alters the internal structure of the metal,a change that both diminishes mechanical strength and reduces corrosion resistance.

    What is Thermal Degradation?

    Thermal degradation is NOT the same as melting.Instead,it involves slow metallurgical changes within the solid metal.These changes occur primarily between 400℃ and 900℃ (750℉ and 1650℉).The high temperature causes certain elements to move and precipitate.This movement forms new,brittle phases. Consequently,the metal loses its original toughness and ductility.

    Ce que nous faisons

    • Plaque
    • Feuille
    • Forgeage
    • Barre ronde
    • Bride
    • Tuyaux
    • Raccords
    • Sur mesure

    Contactez-nous pour plus d'informations 

    Key Mechanisms of Thermal Degradation

    Multiple distinct mechanisms lead to the loss of material integrity.Under high-temperature operating conditions,these processes often occur simultaneously.

    Sigma Phase Formation

    The sigma(σ) phase is a brittle intermetallic compound rich in chrome et molybdène.This phase forms slowly in austénitique et aciers inoxydables duplex.The σ phase typically forms within a temperature range of 600°C to 900°C (1112°F to 1650°F).Its formation significantly reduces material toughness and increases the risk of impact brittle fracture.

    475°C Embrittlement

    This phenomenon primarily affects ferritic and duplex stainless steels.When materials are exposed for extended periods near 475°C (885°F),chromium atoms accumulate within the metal matrix.This accumulation significantly increases material hardness but simultaneously renders the steel extremely brittle at room temperature.This brittleness poses risks during maintenance and inspection operations.

    Carbide Precipitation

    Carbide precipitation is commonly referred to as sensibilisation.It primarily affects austenitic stainless steels such as 304.Within the temperature range of 450°C to 850°C,chromium carbides form along grain boundaries.This process depletes chromium from the surrounding metal,causing the chromium-depleted regions to lose their passivation layer.Consequently,the steel becomes highly susceptible to corrosion intergranulaire.

    MécanismeAffected GradesPlage de températurePrimary Effect
    σ phaseAustenitic, Duplex600°C to 900°C (1112°F to 1650°F)Severe brittleness
    475°C EmbrittlementFerritic, Duplex≤ 475°C(885°F)Hardness increase, ductility loss
    Carbide PrecipitationAusténitique (304, 316)450°C to 850°C(840°F to 1560°F)Susceptibility to intergranular corrosion

    Effects of Thermal Degradation on Piping Systems

    σ-phase-induced embrittlement limits the material’s bending capacity,making stainless steel prone to cracking.Any unexpected mechanical impact may cause immediate failure.

    Carbide precipitation-induced sensitization significantly reduces corrosion resistance.Affected areas become susceptible to chemical erosion,leading to premature corrosion par piqûres and failure in process pipelines.

    Thermal degradation shortens the expected service life of equipment,necessitating premature replacement of components and significantly increasing long-term maintenance costs.

    Failures in high-pressure or high-temperature lines pose safety risks.Maintaining structural integrity is essential for safe operation.

    Material Selection and Mitigation

    • Classes à faible teneur en carbone:
      304L et 316L grades are recommended.The letter “L” following the grade denotes low carbon content.This minimizes carbide precipitation,thereby reducing the risk of sensitization during welding or high-temperature service.
    • Grades stabilisés:
      Grades such as 321 et 347 contain stabilizing elements(titanium or niobium).These elements preferentially form carbides,preventing the formation of harmful chromium carbides.
    • Duplex Steel Control:
      Duplex steels require strict manufacturing control to limit ferrite content,minimizing the risk of σ-phase formation.

    Prevention Strategies in High-Temperature Piping

    StratégieType de composantMitigation Action
    Choix des matériauxPipe,Fittings,FlangesUse low-carbon (“L”) or stabilized grades
    SoudageWelded jointsUse specialized low-heat input welding methods
    Traitement thermiqueFabricated componentsPost-weld solution annealing to re-dissolve carbides
    ConceptionSystem structureAvoid long hold times in critical temperature ranges

    Nous contacter

    Prendre contact
    Trouvez-nous
    logo de Kaysuns

    Nous vous invitons à nous contacter

    Fourniture de Matériaux de tuyauterie en acier inoxydable et en alliage

    • Besoin d'une offre ?
    • Vous souhaitez connaître la dimension / le catalogue ?
    • Parler des problèmes techniques ?

    N'hésitez pas à nous contacter, nous nous ferons un plaisir de répondre à toutes vos questions.

    Obtenir un devis gratuit

    small_c_popup.png

    Obtenir un devis gratuit

    Vous souhaitez en savoir plus ? Contactez nous

    Nous vous répondrons dans les 24 heures. Merci !